Pharmacological blockade of ASCT2-dependent glutamine transport leads to antitumor efficacy in preclinical models (2024)

References

  1. Pochini, L., Scalise, M., Galluccio, M. & Indiveri, C. Membrane transporters for the special amino acid glutamine: structure/function relationships and relevance to human health. Front. Chem. 2, 61 (2014).

    Article PubMed PubMed Central CAS Google Scholar

  2. Jin, L., Alesi, G.N. & Kang, S. Glutaminolysis as a target for cancer therapy. Oncogene 35, 3619–3625 (2016).

    Article CAS PubMed Google Scholar

  3. Hassanein, M. et al. SLC1A5 mediates glutamine transport required for lung cancer cell growth and survival. Clin. Cancer Res. 19, 560–570 (2013).

    Article CAS PubMed Google Scholar

  4. van Geldermalsen, M. et al. ASCT2/SLC1A5 controls glutamine uptake and tumour growth in triple-negative basal-like breast cancer. Oncogene 35, 3201–3208 (2016).

    Article CAS PubMed Google Scholar

  5. Schulte, M.L. et al. Non-invasive glutamine PET reflects pharmacological inhibition of BRAFV600Ein vivo. Mol. Imaging Biol. 19, 421–428 (2017).

    Article CAS PubMed PubMed Central Google Scholar

  6. Gao, P. et al. c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature 458, 762–765 (2009).

    Article CAS PubMed PubMed Central Google Scholar

  7. Watanabe, T. et al. Differential gene expression signatures between colorectal cancers with and without KRAS mutations: crosstalk between the KRAS pathway and other signalling pathways. Eur. J. Cancer 47, 1946–1954 (2011).

    Article CAS PubMed Google Scholar

  8. Romero, R. et al. Keap1 loss promotes Kras-driven lung cancer and results in dependence on glutaminolysis. Nat. Med. 23, 1362–1368 (2017).

    Article CAS PubMed PubMed Central Google Scholar

  9. Shukla, K. et al. Design, synthesis, and pharmacological evaluation of bis-2-(5-henylacetamido-1,2,4-thiadiazol-2-yl)ethyl sulfide 3 (BPTES) analogs as glutaminase inhibitors. J. Med. Chem. 55, 10551–10563 (2012).

    Article CAS PubMed PubMed Central Google Scholar

  10. Harding, J.J. et al. Safety and tolerability of increasing doses of CB-839, a first-in-class, orally administered small molecule inhibitor of glutaminase, in solid tumors. J. Clin. Oncol. 33, 2512 (2015).

    Article Google Scholar

  11. Rhoads, J.M. et al. Glutamine metabolism stimulates intestinal cell MAPKs by a cAMP-inhibitable, Raf-independent mechanism. Gastroenterology 118, 90–100 (2000).

    Article CAS PubMed Google Scholar

  12. Willems, L. et al. Inhibiting glutamine uptake represents an attractive new strategy for treating acute myeloid leukemia. Blood 122, 3521–3532 (2013).

    Article CAS PubMed PubMed Central Google Scholar

  13. Schulte, M.L., Khodadadi, A.B., Cuthbertson, M.L., Smith, J.A. & Manning, H.C. 2-Amino-4-bis(aryloxybenzyl)aminobutanoic acids: a novel scaffold for inhibition of ASCT2-mediated glutamine transport. Bioorg. Med. Chem. Lett. 26, 1044–1047 (2016).

    Article CAS PubMed Google Scholar

  14. Esslinger, C.S., Cybulski, K.A. & Rhoderick, J.F. Nγ-Aryl glutamine analogues as probes of the ASCT2 neutral amino acid transporter binding site. Bioorg. Med. Chem. 13, 1111–1118 (2005).

    Article CAS PubMed Google Scholar

  15. Lomenick, B. et al. Target identification using drug affinity responsive target stability (DARTS). Proc. Natl. Acad. Sci. USA 106, 21984–21989 (2009).

    Article CAS PubMed Google Scholar

  16. Canul-Tec, J.C. et al. Structure and allosteric inhibition of excitatory amino acid transporter 1. Nature 544, 446–451 (2017).

    Article CAS PubMed PubMed Central Google Scholar

  17. Fuchs, B.C. & Bode, B.P. Amino acid transporters ASCT2 and LAT1 in cancer: partners in crime? Semin. Cancer Biol. 15, 254–266 (2005).

    Article CAS PubMed Google Scholar

  18. Nicklin, P. et al. Bidirectional transport of amino acids regulates mTOR and autophagy. Cell 136, 521–534 (2009).

    Article CAS PubMed PubMed Central Google Scholar

  19. Vichai, V. & Kirtikara, K. Sulforhodamine B colorimetric assay for cytotoxicity screening. Nat. Protoc. 1, 1112–1116 (2006).

    Article CAS PubMed Google Scholar

  20. Rathmell, J.C. T cell Myc-tabolism. Immunity 35, 845–846 (2011).

    Article CAS PubMed PubMed Central Google Scholar

  21. Skala, M. & Ramanujam, N. Multiphoton redox ratio imaging for metabolic monitoring in vivo. Methods Mol. Biol. 594, 155–162 (2010).

    Article CAS PubMed PubMed Central Google Scholar

  22. Walsh, A.J. et al. Quantitative optical imaging of primary tumor organoid metabolism predicts drug response in breast cancer. Cancer Res. 74, 5184–5194 (2014).

    Article CAS PubMed PubMed Central Google Scholar

  23. DeBerardinis, R.J., Sayed, N., Ditsworth, D. & Thompson, C.B. Brick by brick: metabolism and tumor cell growth. Curr. Opin. Genet. Dev. 18, 54–61 (2008).

    Article CAS PubMed PubMed Central Google Scholar

  24. Hanover, J.A., Krause, M.W. & Love, D.C. The hexosamine signaling pathway: O-GlcNAc cycling in feast or famine. Biochim. Biophys. Acta 1800, 80–95 (2010).

    Article CAS PubMed Google Scholar

  25. Obeid, L.M., Linardic, C.M., Karolak, L.A. & Hannun, Y.A. Programmed cell death induced by ceramide. Science 259, 1769–1771 (1993).

    Article CAS PubMed Google Scholar

  26. Tresse, E., Kosta, A., Giusti, C., Luciani, M.F. & Golstein, P. A UDP-glucose derivative is required for vacuolar autophagic cell death. Autophagy 4, 680–691 (2008).

    Article CAS PubMed Google Scholar

  27. Sentelle, R.D. et al. Ceramide targets autophagosomes to mitochondria and induces lethal mitophagy. Nat. Chem. Biol. 8, 831–838 (2012).

    Article CAS PubMed PubMed Central Google Scholar

  28. Dall'Armi, C., Devereaux, K.A. & Di Paolo, G. The role of lipids in the control of autophagy. Curr. Biol. 23, R33–R45 (2013).

    Article CAS PubMed PubMed Central Google Scholar

  29. Shatz, O., Holland, P., Elazar, Z. & Simonsen, A. Complex relations between phospholipids, autophagy, and neutral lipids. Trends Biochem. Sci. 41, 907–923 (2016).

    Article CAS PubMed Google Scholar

  30. Huang, F., Zhang, Q., Ma, H., Lv, Q. & Zhang, T. Expression of glutaminase is upregulated in colorectal cancer and of clinical significance. Int. J. Clin. Exp. Pathol. 7, 1093–1100 (2014).

    PubMed PubMed Central Google Scholar

  31. Xiang, Y. et al. Targeted inhibition of tumor-specific glutaminase diminishes cell-autonomous tumorigenesis. J. Clin. Invest. 125, 2293–2306 (2015).

    Article PubMed PubMed Central Google Scholar

  32. Seltzer, M.J. et al. Inhibition of glutaminase preferentially slows growth of glioma cells with mutant IDH1. Cancer Res. 70, 8981–8987 (2010).

    Article CAS PubMed PubMed Central Google Scholar

  33. Gross, M.I. et al. Antitumor activity of the glutaminase inhibitor CB-839 in triple-negative breast cancer. Mol. Cancer Ther. 13, 890–901 (2014).

    Article CAS PubMed Google Scholar

  34. Suzuki, S. et al. Phosphate-activated glutaminase (GLS2), a p53-inducible regulator of glutamine metabolism and reactive oxygen species. Proc. Natl. Acad. Sci. USA 107, 7461–7466 (2010).

    Article CAS PubMed Google Scholar

  35. Chiu, M. et al. GPNA inhibits the sodium-independent transport system L for neutral amino acids. Amino Acids 49, 1365–1372 (2017).

    Article CAS PubMed Google Scholar

  36. McKinley, E.T., Zhao, P., Coffey, R.J., Washington, M.K. & Manning, H.C. 3′-Deoxy-3′-[18F]-fluorothymidine PET imaging reflects PI3K–mTOR-mediated pro-survival response to targeted therapy in colorectal cancer. PLoS One 9, e108193 (2014).

    Article PubMed PubMed Central CAS Google Scholar

  37. Wiza, C., Nascimento, E.B. & Ouwens, D.M. Role of PRAS40 in Akt and mTOR signaling in health and disease. Am. J. Physiol. Endocrinol. Metab. 302, E1453–E1460 (2012).

    Article CAS PubMed Google Scholar

  38. Santio, N.M. et al. The PIM1 kinase promotes prostate cancer cell migration and adhesion via multiple signalling pathways. Exp. Cell Res. 342, 113–124 (2016).

    Article CAS PubMed Google Scholar

  39. Rhoads, J.M. et al. L-Glutamine stimulates intestinal cell proliferation and activates mitogen-activated protein kinases. Am. J. Physiol. 272, G943–G953 (1997).

    CAS PubMed Google Scholar

  40. Meiler, J. & Baker, D. ROSETTALIGAND: protein–small molecule docking with full side-chain flexibility. Proteins 65, 538–548 (2006).

    Article CAS PubMed Google Scholar

  41. Kondo, J. et al. Retaining cell–cell contact enables preparation and culture of spheroids composed of pure primary cancer cells from colorectal cancer. Proc. Natl. Acad. Sci. USA 108, 6235–6240 (2011).

    Article CAS PubMed Google Scholar

  42. McKinley, E.T. et al. 18FDG-PET predicts pharmacodynamic response to OSI-906, a dual IGF-1R/IR inhibitor, in preclinical mouse models of lung cancer. Clin. Cancer Res. 17, 3332–3340 (2011).

    Article CAS PubMed PubMed Central Google Scholar

Download references

Pharmacological blockade of ASCT2-dependent glutamine transport leads to antitumor efficacy in preclinical models (2024)
Top Articles
Latest Posts
Article information

Author: Aracelis Kilback

Last Updated:

Views: 5458

Rating: 4.3 / 5 (44 voted)

Reviews: 91% of readers found this page helpful

Author information

Name: Aracelis Kilback

Birthday: 1994-11-22

Address: Apt. 895 30151 Green Plain, Lake Mariela, RI 98141

Phone: +5992291857476

Job: Legal Officer

Hobby: LARPing, role-playing games, Slacklining, Reading, Inline skating, Brazilian jiu-jitsu, Dance

Introduction: My name is Aracelis Kilback, I am a nice, gentle, agreeable, joyous, attractive, combative, gifted person who loves writing and wants to share my knowledge and understanding with you.